Як перекладається кгс см

0 Comments

Зміст:

Конвертер величин

Перевести единицы: килограмм-сила-сантиметр [кгс·см] в килограмм-сила-метр [кгс·м]

Объем и единицы измерения в кулинарных рецептах

Подробнее о вращающем моменте

Общие сведения

Кода на тело действует сила в определенном направлении — тело поворачивается. Это стремление силы поворачивать тело описывается физической величиной — вращающим моментом или моментом силы. Сама сила, которая вызывает поворот или кручение, а также расстояние между точкой ее приложения и точкой вращения тела влияют на момент силы. В данном случае сила — векторная величина, поэтому важно также и направление силы, то есть угол между направлением силы и отрезком, соединяющим точку приложения силы и центр вращения тела. Если этот угол прямой, то есть сила приложена перпендикулярно отрезку, то момент силы — максимальный. По мере того, как сила становится параллельной отрезку, момент силы уменьшается. То есть, чем ближе угол к 0° или 180°, тем слабее момент силы, пока он не становится равным нулю, когда направление силы параллельно отрезку. Удобно представить момент силы, как комбинацию расстояния, на которое удалена сила от точки вращения, и силы, которая необходима, чтобы заставить тело вращаться с определенной интенсивностью.

Момент силы имеет наибольшую величину, если сила, действующая на тело, перпендикулярна отрезку, соединяющему точку вращения и точку приложения силы. На рисунке силы F2, F3, и F5 создают наибольший момент силы.

Давайте посмотрим на эту взаимосвязь на иллюстрации. Здесь силы F2, F3 и F5 перпендикулярны отрезку между осью вращения, обозначенной голубым цветом в центре штурвала, и точкой приложения силы. Создаваемый ими момент силы — максимален. С другой стороны, силы F1 и F4 приложены под углом, отличным от 90°, и создаваемый ими момент силы не максимален. То есть, момент силы этих двух сил отличается от момента силы других трех сил, хотя величина всех сил на рисунке — одинакова.

Чтобы повернуть тело под воздействием силы с заданными условиями, необходимо создать момент силы. Так как эта величина зависит и от расстояния, и от силы, то для получения заданного момента можно изменять либо силу, либо расстояние от точки приложения до точки вращения. Люди используют эту зависимость испокон веков.

Использование момента силы в быту и технике

Обычно легче увеличить расстояние между телом и точкой приложения силы, чем саму силу. Поэтому чаще всего, когда силы человека или животного недостаточно для того или иного задания, которое включает вращение, используют рычаги и другие устройства, чтобы увеличить расстояние между силой и осью вращения, и тем самым увеличить момент силы. Например, чтобы повернуть мельницу или колесо, на которое наматывают цепь, чтобы поднять тяжелый мост, люди или животные вращают устройства с длинными ручками или рычагами. Длинные рычаги и ручки позволяют увеличить приложенное усилие. Это увеличение пропорционально расстоянию между осью вращения тела и точкой приложения силы.

Ведущие колеса помогают велосипедисту поддерживать оптимальную скорость вращения педалей, и используют момент вращения для преодоления местности с разным рельефом, от ровного до холмистого

Велосипедные педали

Момент силы используется также в педалях велосипедов. Чем дальше ступня от центра велосипедного колеса, тем меньше нужно силы, чтобы повернуть это колесо с помощью педали. Длина наших ног ограничивает максимальную длину педалей — если сделать педали длиннее, чем делают их сейчас на современных велосипедах, то крутить их будет неудобно. Несмотря на эти ограничения, педали сильно облегчают передвижение на велосипеде. Конструкция велосипедных педалей настолько удобна, что некоторые люди, особенно в развивающихся странах, где не всегда есть доступ к новейшей технике, используют велосипедные педали в конструкции других устройств, где нужно ножное или ручное управление. Иногда такие педали устанавливают на инвалидные коляски, чтобы облегчить ручное кручение колес. В этом случае можно немного удлинить педали, чтобы увеличить момент силы, хотя это может несколько затруднить управление коляской.

Гаечный ключ

Гайку намного легче открутить гаечным ключом, чем голыми руками

Гаечные ключи используют момент силы, чтобы уменьшить силу, необходимую для затягивания или откручивания гайки или болта. Гаечный ключ сделан так, чтобы его удобно было держать, но в то же время его длинная ручка увеличивает силу, к нему приложенную, чтобы затянуть или открутить болт или гайку. Иногда достаточно маленького ключа с короткой ручкой, но в некоторых случаях нужна ручка длиннее, например, если мы пытаемся открутить заржавевшую гайку. Если под рукой не оказалось гаечного ключа, можно использовать плоскогубцы. Их длинные ручки создают достаточно высокий момент силы, хотя иногда они сжимают гайку или винт недостаточно сильно, и могут их повредить.

Реверсивный ключ похож по методу работы на обычные гаечные ключи — он, как и гаечный ключ, позволяет увеличить момент силы

Удобство гаечного ключа в том, что когда он подобран по размеру к гайке, сила нужна только для того, чтобы повернуть ключ, но не для того, чтобы удерживать его на гайке. Плоскогубцы, наоборот, нужно удерживать вокруг гайки, чтобы они не сорвались, и на это тратится дополнительная сила. Именно поэтому во многих случаях гаечный ключ более экономичен с точки зрения затраченной энергии. С другой стороны, в некоторых случаях плоскогубцы удобнее — например их можно использовать под углом в труднодоступных местах, в то время как гаечный ключ часто работает только в одной плоскости с гайкой. Если откручивать гайку под наклоном, то момент силы уменьшится, но это лучше, чем совсем не иметь возможности ее отвернуть.

Аналогично работают и инструменты, предназначенные для отвинчивания крышек с законсервированных банок. Обычно это резиновый жгут, прикрепленный к ручке так, что жгут образует петлю, диаметр которой регулируется. Сама петля закрепляется на крышке и не влияет на момент силы, а вот ручка как раз помогает создать нужный момент. Чем она больше, тем больше момент силы. Благодаря ему, банку открыть намного легче, чем руками, с использованием полотенца или материала с высоким коэффициентом трения.

Этот маховик, находящийся внутри двигателя, накапливает энергию, которую двигатель вырабатывает неравномерно, бросками. По мере необходимости маховик выделяет эту энергию более равномерно

Маховик

Хороший пример устройства, которое использует момент силы — маховик. Момент силы приводит его в движение, а также помогает ускорить маховик и, благодаря этому движению, получить энергию. Маховик накапливает и хранит ее для дальнейшего использования. Если эта энергия нужна для других целей, то момент силы, наоборот, замедляет скорость маховика, и вырабатывается энергия, которую потом используют по назначению. Маховики используют в случае, если источник энергии работает в прерывистом режиме, а энергия нужна постоянно. Именно так используют маховики в двигателях автомобилей, где энергия выделяется «вспышками», при сгорании топлива.

В некоторых случаях нужен обратный эффект, то есть необходимо кратковременно подать большое количество энергии, обычно больше, чем источник энергии может выработать в течение заданного промежутка времени. В такой ситуации маховик на протяжении некоторого времени накапливает энергию, поступающую небольшими порциями, чтобы потом отдать нужное количество.

Качели и рычаги

Сила, с которой два ребенка надавливают на качели-балансир, когда сидят по обе стороны от центра, двигает эти качели вверх и вниз. То есть, при этом происходит частичное вращение качелей вокруг своей оси. Если вес обоих детей приблизительно одинаков, то они легко могут качаться на таких качелях. Детям разного веса намного труднее — более тяжелый ребенок тянет качели со своей стороны вниз, а более легкому ребенку не хватает веса, чтобы опустить качели в свою сторону. Это происходит потому, что вес тяжелого ребенка производит больший момент силы. Чтобы решить эту проблему, большому ребенку нужно пересесть ближе к центру настолько, насколько его вес превышает вес второго ребенка. Например, если большой ребенок в три раза тяжелее, то пересесть ему нужно в три раза ближе, и тогда качели придут в равновесие.

Рычаги действуют аналогично: момент силы в них используется для того, чтобы уменьшить силу, нужную для совершения определенной работы. Обычно рычаг — это продолговатый предмет, например ручка или планка, которая вращается вокруг точки, называемой центром вращения или точкой опоры. К другой точке рычага прикладывают силу, которая, благодаря длине рычага, увеличивается или уменьшается в зависимости от конструкции рычага и его назначения.

Рычаги делят на три рода, в зависимости от того, где точка опоры, как приложена сила, которая их поворачивает, и где приложена сила сопротивления. Обычно их называют рычагами первого, второго, и третьего рода. Иногда не совсем понятно, при чем тут сила сопротивления, но она действительно есть. Она противодействует силе, которая направлена на то, чтобы повернуть рычаг. Когда приложенная сила больше силы сопротивления, рычаг поворачивается. Мы, а также другие животные, используем эти принципы в организме, и части нашего тела становятся рычагами, как показано на примерах ниже.

Точка опоры рычагов первого рода находится в середине рычага. На иллюстрации она обозначена буквой F. Сила сопротивления, R, действует на один конец рычага, в то время как сила, действующая на рычаг, E, приложена к противоположному концу рычага. Примеры рычагов первого рода — это ножницы, весы, лом, и голова человека и животных.

Рычаг первого рода похож по конструкции на детские качели-балансир, описанные выше. точка опоры в них посередине, сила приложена на одном конце, а сопротивление возникает на другом конце. Ось вращения в рычаге второго рода находится с одного края рычага, и рядом с ним возникает сопротивление. Сила прилагается к такому рычагу на другом конце. Рычаг третьего рода устроен похоже, но ближе к центру вращения, находящемуся у конца рычага, не сопротивление, а сила, прикладываемая к рычагу. Сопротивление возникает на другом конце рычага.

Рычаги первого рода

Равноплечие весы с чашками — пример рычагов первого рода. Ножницы — тоже, только они состоят из двух рычагов, соединенных между собой. С их помощью намного легче, чем ножом, аккуратно разрезать некоторые материалы, например бумагу или ткань. Чем длиннее ручки, тем более толстые и твердые материалы можно разрезать. С другой стороны, чем дальше поместить от оси вращения материал, который нужно разрезать, тем труднее это сделать.

Ножницы-болторезы предназначены для резки толстой проволоки и болтов, с использованием силы мышц, поэтому у них длинные ручки, чтобы увеличить момент силы

Чем толще материал, который нужно разрезать, тем больший момент силы необходим для этого, и тем длиннее должны быть ручки ножниц и прочнее материал, из которых они сделаны. В некоторых случаях к ножницам добавляют пружину, которая делает их более удобными в использовании. Так, например, устроен садовый секатор. Кроме этого у специализированных ножниц бывают и другие особенности. В медицине используют ножницы с закругленными, тупыми и острыми концами, в зависимости от их назначения. В отличие от скальпеля, ими удобнее работать и у них механическое преимущество над скальпелем, хотя скальпель тоже широко используется, так как в некоторых случаях он удобнее ножниц. Медицинские ножницы, предназначенные для использования врачами скорой помощи, закруглены на конце, чтобы можно было разрезать ими одежду, не повредив кожи. Некоторые медицинские ножницы — очень маленькие. Например, офтальмологические хирургические ножницы могут быть всего 6 сантиметров длиной, с лезвием до 2 сантиметров, и даже короче.

Лом-монтировку или лом-гвоздодер, называемый также «фомкой» тоже можно считать рычагом первого рода, хотя иногда, в зависимости от использования, он может быть и рычагом второго или третьего рода. Чаще всего его используют, чтобы вынуть забитые гвозди, или разобщить два предмета, соединенных клеем, гвоздями, скрепками, и аналогичными способами. Лом получил дурную репутацию, как инструмент воров, взломщиков, и других преступников, хотя на самом деле преступники используют любые подручные материалы и инструменты, лишь бы они помогли добиться конечного результата.

Пример рычага первого рода в организме людей и некоторых животных — голова. Она находится в равновесии на шее. Шея — центр вращения, сила мышц прилагается с одной стороны головы, сила сопротивления — с другой. Когда приложенная сила достаточно велика, голова наклоняется в сторону направления этой силы.

Точка опоры рычагов второго рода находится на одном конце рычага, а сила прикладывается к другому концу. Сила сопротивления возникает между силой, действующей на рычаг, и осью вращения.

Рычаги второго рода

Примеры рычагов второго рода — челюсти людей и животных, и клювы птиц. Являются ими и щипцы для орехов, а также декоративные щелкунчики. Щипцы чаще всего делают из металла, хотя иногда встречаются изделия и из других материалов, например из дерева. Щелкунчики — стилизованные щипцы, сделанные из дерева, и украшенные наподобие кукол. Раньше их использовали по прямому назначению, но сейчас это по большей части украшения. Чаще всего их делают в форме солдат, королей, и других фигурок. В США и Канаде такие фигурки часто используют как новогодние украшения. Считается, что щелкунчиков начали делать в лесистых районах Германии. Их там делают на продажу как сувениры и до сих пор. Сейчас для расщепления орехов чаще всего используют обычные щипцы, а не щелкунчиков. Такие щипцы похожи на щипцы для расщепления клешней крабов и омаров. Кстати, сами крабовые и омаровые клешни — тоже рычаги второго ряда, и работают по тому же принципу, что и щипцы для орехов.

Клешни этого краба — рычаги второго рода. Они нужны крабам для того, чтобы обороняться от других крабов. У некоторых видов крабов клешни также привлекают самок во время брачного периода.

Чеснокодавилка — еще один пример рычагов второго ряда. По устройству она похожа на щипцы для орехов. Ее часто используют в быту, хотя некоторые повара предпочитают мелко резать чеснок, и считают, что чеснокодавилка портит вкус чеснока. Другие, наоборот, пользуются только чеснокодавилкой, так как вкус чеснока при ее использовании усиливается.

Ступня людей и некоторых животных — тоже рычаг второго типа. Точка опоры в этом случае в районе пальцев, мышцы ноги прикладывают силу около пятки, а сила сопротивления — это наш вес. Этот «рычаг» позволяет нам держать равновесие, а также подниматься и опускаться на пальцах.

Другие примеры рычагов второго класса — тачки, тормоза в автомобиле и двери. Если толкнуть дверь рядом с осью вращения, то она вряд ли откроется, но если толкать как можно дальше от этой оси, то даже тяжелая дверь легко поддается. Именно поэтому ручки делают со стороны, противоположной расположению петель. Чтобы даже тяжелую дверь было легко открывать, ее можно сделать шире.

Открывалки для бутылок — тоже рычаги второго класса, особенно те, что не прикреплены к стене, как в некоторых барах и ресторанах. В некоторых перочинных ножах имеются маленькие открывалки; также популярны брелки-открывалки. Если под рукой нет открывалки, то иногда получается использовать подручные материалы, например нож или вилку. Сами открывалки можно в некоторых случаях использовать, чтобы поддеть закрученную крышку на банке — если сделать это удачно, то банка легче откроется. Иногда открывалки используют как рычаги первого класса. В этом случае открывалку закрепляют на крышке иначе и давят на нее снизу, а не сверху, как с рычагами второго рода.

Рычаги третьего рода

Если поднимать рукой тяжелые предметы, сгибая локоть, то рука становится рычагом третьего рода. Во время бега и ходьбы, ноги тоже становятся рычагами. Точка опоры рычага в этом случае — в локтях и коленях. Если «продлить» руку инструментом, например бейсбольной битой или теннисной ракеткой, то опять получится рычаг третьего рода. Чтобы заставить этот рычаг двигаться, силу прикладывают возле центра вращения. При этом сопротивление образуется на другом конце. В случае с ракеткой и битой, сопротивление — в месте, где они соприкасаются с мячом. Удочка — тоже рычаг третьего рода, и сила прикладывается к ней в районе запястья.

Другие примеры рычагов третьего рода — молоток, и аналогичные инструменты, такие как лопаты, грабли, веники, и мухобойки. Некоторые инструменты состоят сразу из двух рычагов, действующих по направлению друг к другу. Так устроены, например, пинцет, степлер и щипцы.

Пример

Теперь давайте рассмотрим пример. Представим, что обычный человек среднего телосложения может поднять камень весом в 20 кг. Конечно, это будет нелегко, и придется сильно напрячь мышцы, но поднять такой камень вполне возможно. С другой стороны, маленький ребенок такой камень поднять не в состоянии. Если же дать ребенку достаточно длинный и прочный лом и научить его, как им пользоваться, то он справится с этой задачей, так как сила, нужная для того, чтобы поднять камень, намного уменьшится. Архимед говорил, что он может сдвинуть Землю, если встанет достаточно далеко от нее, и возьмет длинный рычаг. Это утверждение основано на таком же принципе. После того, как мы поднимем наш 20-ти-киллограммовый камень с помощью лома — рычага первого рода — мы можем погрузить его на тачку — рычаг второго рода — и отвезти, куда необходимо, поднимая за ручки руками — рычагами третьего рода.

Конвертер величин

Перевести единицы: килограмм [кг] в килограмм-сила-сантиметр [кгс·см]

1 килограмм [кг] = 9,16475227328223E+17 килограмм-сила-сантиметр [кгс·см]

Сделай сам! Как самостоятельно, без визита к офтальмологу, подобрать себе новые очки

Подробнее об энергии

Общие сведения

Энергия — физическая величина, имеющая большое значение в химии, физике, и биологии. Без нее жизнь на земле и движение невозможны. В физике энергия является мерой взаимодействия материи, в результате которого выполняется работа или происходит переход одних видов энергии в другие. В системе СИ энергия измеряется в джоулях. Один джоуль равен энергии, расходуемой при перемещении тела на один метр силой в один ньютон.

Энергия в физике

Кинетическая и потенциальная энергия

Кинетическая энергия тела массой m, движущегося со скоростью v равна работе, выполняемой силой, чтобы придать телу скорость v. Работа здесь определяется как мера действия силы, которая перемещает тело на расстояние s. Другими словами, это энергия движущегося тела. Если же тело находится в состоянии покоя, то энергия такого тела называется потенциальной энергией. Это энергия, необходимая, чтобы поддерживать тело в этом состоянии.

Гидроэлектростанция имени сэра Адама Бэка. Ниагара-Фолс, Онтарио, Канада.

Например, когда теннисный мяч в полете ударяется об ракетку, он на мгновение останавливается. Это происходит потому, что силы отталкивания и земного притяжения заставляют мяч застыть в воздухе. В этот момент у мяча есть потенциальная, но нет кинетической энергии. Когда мяч отскакивает от ракетки и улетает, у него, наоборот, появляется кинетическая энергия. У движущегося тела есть и потенциальная и кинетическая энергия, и один вид энергии преобразуется в другой. Если, к примеру, подбросить вверх камень, он начнет замедлять скорость во время полета. По мере этого замедления, кинетическая энергия преобразуется в потенциальную. Это преобразование происходит до тех пор, пока запас кинетической энергии не иссякнет. В этот момент камень остановится и потенциальная энергия достигнет максимальной величины. После этого он начнет падать вниз с ускорением, и преобразование энергии произойдет в обратном порядке. Кинетическая энергия достигнет максимума, при столкновении камня с Землей.

Закон сохранения энергии гласит, что суммарная энергия в замкнутой системе сохраняется. Энергия камня в предыдущем примере переходит из одной формы в другую, и поэтому, несмотря на то, что количество потенциальной и кинетической энергии меняется в течение полета и падения, общая сумма этих двух энергий остается постоянной.

Производство энергии

Люди давно научились использовать энергию для решения трудоемких задач с помощью техники. Потенциальная и кинетическая энергия используется для совершения работы, например, для перемещения предметов. Например, энергия течения речной воды издавна используется для получения муки на водяных мельницах. Чем больше людей использует технику, например автомобили и компьютеры, в повседневной жизни, тем сильнее возрастает потребность в энергии. Сегодня большая часть энергии вырабатывается из невозобновляемых источников. То есть, энергию получают из топлива, добытого из недр Земли, и оно быстро используется, но не возобновляется с такой же быстротой. Такое топливо — это, например уголь, нефть и уран, который используется на атомных электростанциях. В последние годы правительства многих стран, а также многие международные организации, например, ООН, считают приоритетным изучение возможностей получения возобновляемой энергии из неистощимых источников с помощью новых технологий. Многие научные исследования направлены на получение таких видов энергии с наименьшими затратами. В настоящее время для получения возобновляемой энергии используются такие источники как солнце, ветер и волны.

Энергия для использования в быту и на производстве обычно преобразуется в электрическую при помощи батарей и генераторов. Первые в истории электростанции вырабатывали электроэнергию, сжигая уголь, или используя энергию воды в реках. Позже для получения энергии научились использовать нефть, газ, солнце и ветер. Некоторые большие предприятия содержат свои электростанции на территории предприятия, но большая часть энергии производится не там, где ее будут использовать, а на электростанциях. Поэтому главная задача энергетиков — преобразовать произведенную энергию в форму, позволяющую легко доставить энергию потребителю. Это особенно важно, когда используются дорогие или опасные технологии производства энергии, требующие постоянного наблюдения специалистами, такие как гидро- и атомная энергетика. Именно поэтому для бытового и промышленного использования выбрали электроэнергию, так как ее легко передавать с малыми потерями на большие расстояния по линиям электропередач.

Опоры линии электропередачи возле гидроэлектростанции имени сэра Адама Бека. Ниагара-Фолс, Онтарио, Канада.

Электроэнергию преобразуют из механической, тепловой и других видов энергии. Для этого вода, пар, нагретый газ или воздух приводят в движение турбины, которые вращают генераторы, где и происходит преобразование механической энергии в электрическую. Пар получают, нагревая воду с помощью тепла, получаемого при ядерных реакциях или при сжигании ископаемого топлива. Ископаемое топливо добывают из недр Земли. Это газ, нефть, уголь и другие горючие материалы, образованные под землей. Так как их количество ограничено, они относятся к невозобновляемым видам топлива. Возобновляемые энергетические источники — это солнце, ветер, биомасса, энергия океана, и геотермальная энергия.

В отдаленных районах, где нет линий электропередач, или где из-за экономических или политических проблем регулярно отключают электроэнергию, используют портативные генераторы и солнечные батареи. Генераторы, работающие на ископаемом топливе, особенно часто используют как в быту, так и в организациях, где совершенно необходима электроэнергия, например, в больницах. Обычно генераторы работают на поршневых двигателях, в которых энергия топлива преобразуется в механическую. Также популярны устройства бесперебойного питания с мощными батареями, которые заряжаются когда подается электроэнергия, а отдают энергию во время отключений.

Электростанция компании Florida Power and Light. Порт-Эверглейд, Флорида, США. Эта электростанция состоит из четырех блоков и работает на газе и нефти.

Энергия, получаемая при сгорании ископаемого топлива

Ископаемое топливо образуется в земной коре при высоком давлении и температуре из органических веществ, то есть остатков растений и животных. В основном, такое топливо содержит большое количество углерода. При его сгорании выделяется энергия, а также диоксид углерода (CO₂), один из парниковых газов. Именно ископаемое топливо — основной источник энергии на данный момент. Однако, выделяемые при его использовании парниковые газы представляют серьезную угрозу окружающей среде и усугубляют глобальное потепление. Также, использование этого топлива ведет к быстрому его расходу, и человечество может остаться без топлива, если будет полностью зависеть только от ископаемого сырья.

Градирни атомной электростанции. Фотография из архива сайта 123RF.com.

Атомная энергия

Атомная энергия — один из альтернативных видов энергии. Она выделяется во время контролируемой ядерной реакции деления, во время которой ядро атома делится на более мелкие части. Энергия, которая выделяется во время этой реакции, нагревает воду и превращает ее в пар, который движет турбины.

Атомная энергетика небезопасна. Самые известные за последние годы аварии произошли на Чернобыльской атомной электростанции (АЭС) на Украине, на АЭС Три-Майл-Айленд в США, и на АЭС Фукусима-1 в Японии. После Фукусимской трагедии многие страны начали пересматривать внутреннюю политику использования атомной энергии, и некоторые, например Германия, решили от нее отказаться. На данный момент Германия разрабатывает программу перехода на другие виды энергоснабжения и безопасного закрытия действующих электростанций.

Кроме аварий есть еще проблема хранения отработавшего ядерного топлива и радиоактивных отходов. Часть отработавшего ядерного топлива используют в производстве оружия, в медицине, и в других отраслях промышленности. Однако большую часть радиоактивных отходов использовать нельзя и поэтому необходимо обеспечивать их безопасное захоронение. Каждая страна, в которой построены атомные электростанции, хранит эти отходы по-своему, и во многих странах приняты законы, запрещающие их ввоз на территорию страны. Радиоактивные отходы обрабатывают, чтобы они не попадали в окружающую среду, не разлагались, и их было удобно хранить, например, делая их более компактными. После этого их отправляют на захоронение в долгосрочных хранилищах на дне морей и океанов, в геологических структурах, или в бассейнах и специальных контейнерах. С хранением связаны такие проблемы как высокая стоимость переработки и захоронения, утечка радиоактивных элементов в окружающую среду, нехватка мест для хранения, и возможность совершения террористических актов на объектах захоронения радиоактивных отходов.

Гораздо более безопасная альтернатива — это производство ядерной энергии с помощью термоядерной реакции. Во время этой реакции несколько ядер сталкиваются на большой скорости и образуют новый атом. Это происходит потому, что силы, отталкивающие ядра друг от друга, на маленьком расстоянии слабее, чем силы, их притягивающие. Во время термоядерной реакции тоже образуются радиоактивные отходы, но они перестают быть радиоактивными приблизительно через сто лет, в то время как отходы реакции деления не распадаются на протяжении нескольких тысяч лет. Топливо, требуемое для термоядерных реакций менее дорогое, чем для реакций деления. Энергетические затраты на термоядерные реакции на данный момент не оправдывают их использования в энергетике, но ученые надеются, что в ближайшем будущем это изменится и АЭС во всем мире смогут получать атомную энергию именно таким способом.

Возобновляемая энергия

Другие альтернативные виды энергии — это энергия солнца, океана, и ветра. Технологии производства такой энергии пока не развиты в такой степени, чтобы человечество могло отказаться от использования ископаемого топлива. Однако, благодаря государственным субсидиям, а также тому, что они не причиняют много вреда окружающей среде, эти виды энергии становятся все более популярными.

Энергия солнца

Эксперименты по использованию энергии солнца начались еще в 1873 году, но эти технологии не получили широкого распространения до недавнего времени. Сейчас солнечная энергетика быстро развивается, во многом благодаря государственным и международным субсидиям. Первые солнечные энергоцентры появились в 1980-х. Солнечную энергию чаще собирают и преобразуют в электроэнергию с помощью солнечных батарей. Иногда используют тепловые машины, в которых воду нагревают солнечным теплом. В результате образуется водяной пар, который и приводит в движение турбогенератор.

Ветряная турбина в комплексе Эксибишн Плейс. Торонто, Онтарио, Канада.

Энергия ветра

Человечество использовало энергию ветра на протяжении многих веков. Впервые ветер начали использовать в мореходстве около 7000 лет назад. Ветряные мельницы используются несколько сотен лет, а первые ветротурбины и ветрогенераторы появились в 1970-х.

Энергия океана

Энергия приливов и отливов использовалась еще во времена Древнего Рима, но энергию волн и морских течений люди начали использовать недавно. В настоящее время большинство приливных и волновых электростанций только разрабатывается и испытывается. В основном проблемы связаны с высокой стоимостью строительства таких станций, и недостатками сегодняшних технологий. В Португалии, Великобритании, Австралии и США сейчас эксплуатируются волновые электростанции, однако многие из них все еще находятся в стадии опытной эксплуатации. Ученые считают, что в будущем энергия океана станет одной из основных направлений «зеленой энергии».

Приливная турбина в Канадском музее науки и техники в Оттаве

Биотопливо

При сжигании биотоплива выделяется энергия, которую растения переработали из солнечной энергии в процессе фотосинтеза. Биотопливо широко используется как в бытовых целях, например для обогрева жилья и приготовления пищи, так и в качестве топлива для транспорта. Из растений и животных жиров производят разновидности биотоплива — этиловый спирт и масла. В автотранспорте используется биодизельное топливо либо в чистом виде, либо в смеси с другими видами дизельного топлива.

Геотермальная энергетика

Энергия земного ядра хранится в виде тепла. Земная кора была нагрета до очень высокой температуры с момента ее формирования и до сих пор поддерживает высокую температуру. Радиоактивный процесс распада минералов в недрах Земли также выделяет тепло. До недавнего времени получить доступ к этой энергии можно было только на стыках земных пластов, в местах образования горячих источников. Совсем недавно началась разработка геотермальных скважин и в других географических регионах для того, чтобы начать использовать эту энергию для получения электричества. На данный момент стоимость энергии, полученной из таких скважин, очень высокая, поэтому геотермальная энергия не используется так широко, как другие виды энергии.

Река Ниагара, возле электростанции имени Вильяма Б. Ранкина. В 2009 году она была выведена из эксплуатации. Ниагара-Фолс, Онтарио, Канада.

Гидроэнергетика

Гидроэнергетика — еще одна альтернатива ископаемому топливу. Гидроэнергия считается «чистой», так как по сравнению со сжиганием ископаемого топлива, ее производство приносит меньше вреда окружающей среде. В частности, при получении гидроэнергии выброс парниковых газов незначителен.

Гидроэнергия вырабатывается потоком воды. Человечество широко использует этот вид энергии на протяжении многих веков и ее производство остается популярным благодаря ее низкой себестоимости и доступности. Гидроэлектростанции (ГЭС) собирают и преобразуют кинетическую энергию течения речной воды и потенциальную энергию воды в резервуарах с помощью плотин. Эта энергия приводит в движение гидротурбины, которые преобразует ее в электроэнергию. Плотины устроены так, чтобы можно было использовать разницу в высотах между резервуаром, из которого вытекает вода, и рекой, в которую перетекает вода.

Гидроэлектростанция имени Роберта Мозэса. Льюистон, штат Нью-Йорк, США

Несмотря на плюсы гидроэнергетики, с ней связан ряд проблем, таких как вред, наносимый экосфере при строительстве плотин. Такое строительство нарушает экосистемы, и живые организмы оказываются отрезанными от жизненно важной среды в экосистеме. Например, рыбы не могут проплыть вверх по течению на нерест и не всегда приспосабливаются к новым условиям. Общественность не всегда может контролировать работу энергетических компаний, поэтому в результате строительства новых ГЭС может возникнуть гуманитарный кризис. Примером такого кризиса является выселение жителей в результате строительства ГЭС «Три ущелья» в Китае. При постройке этой ГЭС правительством Китая было выселено более 1,2 миллиона жителей и затоплена огромная площадь, включая поля, промышленные зоны, города, и поселки. Бытовые и производственные отходы были смыты и засорили новое водохранилище, отравляя растения и рыб. Из-за огромного количества воды в резервуаре в регионе увеличилась сейсмическая активность. В 2011 году Китайское правительство признало эту и некоторые другие проблемы.

Энергия в диетологии и спорте

Калории в диетологии

Эти количества сахара, яблока, банана и салями содержат одну пищевую калорию

Энергию в спорте и диетологии обычно измеряют в килоджоулях или пищевых калориях. Одна такая калория равна 4,2 килоджоуля, одной килокалории, или тысяче калорий, используемых в физике. По определению одна пищевая калория — это количество энергии, нужное, чтобы нагреть один килограмм воды на один кельвин. В диетологии пищевые калории обычно называют просто калориями, что мы и будем делать в дальнейшем в этой статье. Иногда это вызывает путаницу, но обычно читатель может понять по контексту, о каких единицах идет речь. Большинство пищевых продуктов содержит калории. Так, например, в одном грамме жира — 9 калорий, в грамме углеводов и белков — по 4 калории в каждом, а в алкоголе — 7 калорий на грамм. Некоторые другие вещества также содержат калории. Эта энергия выделяется во время обмена веществ, и используется организмом для поддержания жизнедеятельности.

Люди, пытающиеся похудеть, часто подсчитывают калории, поглощаемые при принятии пищи, и вычитают из этой суммы калории, использованные во время физической нагрузки. Это делается, чтобы сравнить число неиспользованных на физическую нагрузку калорий с ежедневными энергетическими потребностями тела в расслабленном состоянии. Обычно, чтобы похудеть, число оставшихся калорий должно быть меньше, чем требуется телу для поддержания организма в спокойном состоянии. В то же время, врачи и диетологи считают опасным употреблять менее 1000 калорий в день. Энергетические потребности тела в состоянии отдыха можно вычислить по формуле, которая учитывает возраст, рос, и вес человека. Эта формула рассчитана на среднего человека, но каждый организм хранит и расходует энергию по-своему, в зависимости от потребностей. Поэтому не всегда удается худеть, даже потребляя меньше калорий, чем требуется организму согласно этой формуле. Организм часто приспосабливается к недостатку калорий, замедляя обмен веществ. В результате потребность в энергии падает, и подсчеты ежедневных энергетических потребностей человека по формуле приводят к ошибочным результатам. Несмотря на это, многие диетологи рекомендуют желающим похудеть вести ежедневный учет потребления калорий.

Калорийность — важное понятие в диетологии, которое помогает определить насколько энергетически полезна данная еда для организма. Считают калорийность, путем определения количества калорий в одном грамме пищевого продукта. Продукты с низкой калорийностью обычно содержат много воды. Она заполняет желудок, и у человека возникает ощущение сытости. В результате он потребляет меньшее число калорий по сравнению с другой едой. Например, в одной стограммовой шоколадке содержится 504 калории. Для сравнения, такая шоколадка займет немного менее половины стакана. В полутора стаканах или в 320 граммах белого мяса вареной индейки с низким содержанием жира и без кожи содержится приблизительно столько же калорий. Такое же количество калорий содержится и в 6,3 килограммах огурцов, то есть, в 25 чашках. Этот же пример с уменьшенными порциями выглядит так: примерно 50 калорий содержится в одной шоколадной конфете, столовой ложке индейки, и шести стаканах огурцов. После такой порции огурцов вряд ли захочется есть, а после одной шоколадной конфеты многие потянутся за второй и третьей. Еда с высокой калорийностью — это обычно вредная жирная и сладкая пища, которую стоит избегать. Людям на диете очень полезно знать калорийность разных продуктов, но не стоит забывать, что при составлении меню необходимо учитывать не только калорийность, но и общую полезность каждого продукта. Чтобы добиться максимальных результатов и улучшить здоровье, питание должно быть сбалансировано.

Пищевая ценность — другое полезное понятие в диетологии. Это соотношение питательных и полезных веществ необходимых организму, например витаминов, клетчатки, антиоксидантов и минералов, к энергетической ценности еды. Так, продукты с высокой пищевой ценностью содержат большое количество полезных веществ на каждую калорию продукта. И наоборот, существуют продукты с «пустыми калориями», то есть, с очень малым количеством полезных веществ и низкой питательностью. Алкоголь, сладости, чипсы — это некоторые примеры такой еды. Их лучше всего исключить из рациона, или, по крайней мере, ограничить, потому что они не обеспечивают организм достаточным количеством необходимых для жизни полезных веществ.

Калории в спорте

Энергия нужна человеку и животным, чтобы поддержать основной обмен веществ, то есть метаболизм организма в состоянии покоя. Это — энергия для поддержания работы мозга, тканей, и других органов. Также энергия нужна для каждодневной физической нагрузки и упражнений. При уменьшении жировой и увеличении мышечной массы основной обмен веществ ускоряется, а потребность в энергии — увеличивается. Поэтому, любая программа по оздоровлению организма и похудению должна основываться не только на уменьшении жира, но и на увеличении мышечной массы. Для этого важно не только правильно питаться, но и заниматься спортом, особенно упражнениями, которые помогают развивать мышцы.

Количество энергии, потраченной при упражнениях, зависит от того, были ли они аэробными, или анаэробными. При аэробных упражнениях кислород расщепляет глюкозу, и при этом выделяется энергия. Во время анаэробных упражнений кислород для этого процесса не используется; вместо него энергия вырабатывается при реакции креатинфосфата с глюкозой. Анаэробные упражнения способствуют росту мышц, они кратковременны и интенсивны. Примерами таких видов спорта являются бег на короткие дистанции и тяжелая атлетика. Их невозможно продолжать долго из-за того, что в процессе получения энергии вырабатывается молочная кислота. Ее избыток в крови вызывает боль, и если человек, несмотря на это продолжает упражнение, он может потерять сознание. Аэробные упражнения, напротив, можно продолжать в течении длительного времени, так как они менее интенсивны, и главное в них — выносливость. К таким упражнениям относятся бег на длинные дистанции, плавание и аэробика. С их помощью развивается выносливость мышц сердца и дыхательной системы, а также сжигается жир и улучшается кровообращение.

Энергия и борьба с лишним весом

Несмотря на то, что недостаток энергии, по отношению к затратам, обычно ведет к похудению, это не всегда так, и часто после первочального похудения человек перестает худеть, или даже набирает вес, несмотря на строгое соблюдение диеты. Это происходит из-за адаптации организма к недостатку калорий, например, в результате замедления обмена веществ. В таких случаях советуют изменить распорядок упражнений и меню, например, временно сменить вид спорта и попробовать менять дневную норму калорий. Например, каждый день можно потреблять либо больше, либо меньше калорий относительно установленной дневной нормы, или можно вместо дневной нормы установить недельную норму потребления калорий.

Очень важно помнить, что для поддержания быстрого и здорового обмена веществ организму необходима мышечная масса. Поэтому здоровые диеты должны совмещаться с упражнениями, направленными на развитие мышц. Жир весит меньше, чем мышцы, поэтому когда вследствие диет и упражнений увеличивается мышечная и уменьшается жировая масса, то общий вес увеличивается, несмотря на то, что организм становится более здоровым. Поэтому при оздоровлении организма следить только за потерей веса неправильно. Конечной целью лучше поставить потерю жира и развитие мышц. Это относится как к мужчинам, так и к женщинам. Кроме взвешивания можно измерять процент жировых тканей в организме или проверять изменения в объеме талии, бедер, и других частей тела, где организм откладывает жир. Диетологи и тренеры советуют стремиться к снижению процента жира до 14-24% женщинам, и 6-17% мужчинам.

Еще один вариант диеты — постепенное увеличение или уменьшение количества калорий в еде на протяжении определенного времени. После этого необходимо всегда возвращаться назад к установленной норме. Диетологи также советуют разнообразить количество продуктов во время каждого приема пищи, а также, основной вид еды. Например, можно попробовать в первый день съесть на обед немного богатых углеводами продуктов, а на следующий день съесть большой обед из овощей и белковых продуктов. Главное, чтобы организм не привыкал к одинаковому виду еды и количеству калорий при каждом приеме пищи, и не мог приспособиться к нехватке энергии, замедляя метаболизм. Многие диеты и упражнения направлены на то, чтобы ускорить метаболизм, потому что это позволяет организму тратить энергию, а не откладывать ее в жир. Поэтому, составляя план питания и упражнений, необходимо помнить об этой проблеме адаптации организма. Также важно заниматься анаэробными упражнениями, чтобы увеличить мышечную массу. Система из разных упражнений, к которым организм не может полностью привыкнуть, также поможет избежать адаптации.

Энергетические напитки

Рекламодатели часто используют слово «энергия» в рекламных целях. Так, например, рекламируются энергетические напитки, повышающие работоспособность и бодрость. В них обычно содержатся психостимуляторы, такие как кофеин, много сахара, и иногда — витамины и экстракты лечебных трав. Психостимуляторы используются для того, чтобы за короткий срок организм выработал максимальное количество энергии. При этом повышается ток крови, артериальное давление, пульс, и температура. В мозг поступает больше кислорода, и усиливаются ощущения бодрости, силы, и энергии. Энергетические напитки, несмотря на их название, нельзя употреблять во время занятий спортом, так как они нарушают электролитический баланс в организме. Высокое содержание психостимуляторов действительно на короткое время повышает бодрость, но вскоре после этого происходит спад и «ломка», напоминающая период отвыкания от сахара, кофеина и алкоголя. Многие испытывают другие побочные явления, включая тошноту, рвоту, головные боли, высокое артериальное давление, и бессонницу. Врачи рекомендуют воздержаться от употребления энергетических напитков. Использование естественной энергии организма и своевременный отдых намного лучше для организма, чем употребление психостимуляторов.

Конвертер величин

Перевести единицы: килограмм [кг] в килограмм-сила кв. сек./метр [кгс·с²/м]

1 килограмм [кг] = 0,101971621297793 килограмм-сила кв. сек./метр [кгс·с²/м]

Коэффициент теплоотдачи

Подробнее о массе

Общие сведения

Масса — это свойство физических тел противостоять ускорению. Масса, в отличие от веса, не изменяется в зависимости от окружающей среды и не зависит от силы притяжения планеты, на которой находится это тело. Массу m определяют при помощи второго закона Ньютона, по формуле: F = ma, где F — это сила, а a — ускорение.

Масса и вес

В обиходе часто используется слово «вес», кода говорят о массе. В физике же вес, в отличие от массы — это сила, действующая на тело благодаря притяжению между телами и планетами. Вес также можно вычислить по второму закону Ньютона: P= mg, где m — это масса, а g — ускорение свободного падения. Это ускорение возникает благодаря силе притяжения планеты, вблизи которой находится тело, и его величина также зависит от этой силы. Ускорение свободного падение на Земле равно 9,80665 метра в секунду, а на Луне — примерно в шесть раз меньше — 1,63 метра в секунду. Так, тело массой в один килограмм весит 9,8 ньютона на Земле и 1,63 ньютона на Луне.

Гравитационная масса

Гравитационная масса показывает какая гравитационная сила действует на тело (пассивная масса) и с какой гравитационной силой тело действует на другие тела (активная масса). При увеличении активной гравитационной массы тела его сила притяжения также увеличивается. Именно эта сила управляет движением и расположением звезд, планет и других астрономических объектов во вселенной. Приливы и отливы также вызваны гравитационными силами Земли и Луны.

С увеличением пассивной гравитационной массы увеличивается и сила, с которой гравитационные поля других тел действуют на это тело.

Инертная масса

Инертная масса — это свойство тела противостоять движению. Именно вследствие того, что тело имеет массу, нужно прикладывать определенную силу, чтобы сдвинуть тело с места или изменить направление или скорость его движения. Чем больше инертная масса, тем большую силу нужно для этого приложить. Масса во втором законе Ньютона — именно инертная масса. По величине гравитационная и инертная массы равны.

Масса и теория относительности

Согласно теории относительности, гравитирующая масса изменяет кривизну пространственно-временного континуума. Чем больше такая масса тела, тем сильнее это искривление вокруг этого тела, поэтому вблизи тел большой массы, таких как звёзды, траектория световых лучей искривляется. этот эффект в астрономии носит название гравитационных линз. Наоборот, вдали от больших астрономических объектов (массивные звёзды или их скопления, называемые галактиками) движение световых лучей прямолинейно.

Основным постулатом теории относительности является постулат о конечности скорости распространения света. Из этого вытекает несколько любопытных следствий. Во-первых, можно представить себе существование объектов со столь большой массой, что вторая космическая скорость такого тела будет равна скорости света, т.е. никакая информация от этого объекта не сможет попасть во внешний мир. Такие космические объекты в общей теории относительности называют «чёрными дырами» и их существование было экспериментально доказано учёными. Во-вторых, при движение объекта с околосветовой скоростью его инертная масса настолько возрастает, что, локальное время внутри объекта замедляется по сравнению со временем. измеряемым стационарными часами на Земле. Этот парадокс известен как «парадокс близнецов»: один из них отправляется в космический полёт с околосветовой скоростью, другой остаётся на Земле. По возвращении из полёта через двадцать лет, выясняется, что космонавт-близнец биологически моложе своего брата!

Единицы

Килограмм

В системе СИ масса изменяется в килограммах. Килограмм определяется исходя из точного численного значения постоянной Планка h, равной 6,62607015×10⁻³⁴, выраженной в Дж с, что равно кг м² с⁻¹, причем секунда и метр определяются по точным значениям c и ΔνCs. Массу одного литра воды можно приближенно считать равной одному килограмму. Производные килограмма, грамм (1/1000 килограмма) и тонна (1000 килограммов) не являются единицами СИ, но широко используются.

Электронвольт

Электронвольт — единица для измерения энергии. Обычно ее используют в теории относительности, а энергию вычисляют по формуле E=mc², где E — это энергия, m — масса, а c — скорость света. Согласно принципу эквивалентности массы и энергии, электронвольт — также и единица массы в системе естественных единиц, где c равна единице, а значит, масса равна энергии. В основном электронвольты используют в ядерной и атомной физике.

Атомная единица массы

Атомная единица массы (а. е. м.) предназначена для масс молекул, атомов, и других частиц. Одна а. е. м. равна 1/12 массы атома нуклида углерода, ¹²C. Это примерно 1,66 × 10 ⁻²⁷ килограмма.

Слаг

Слаги используются в основном в британской имперской системе мер в Великобритании и некоторых других странах. Один слаг равен массе тела, которое движется с ускорением один фут в секунду за секунду, когда к нему приложена сила в один фунт-силу. Это примерно 14,59 килограмма.

Солнечная масса

Солнечная масса — мера массы, принятая в астрономии для измерения звезд, планет и галактик. Одна солнечная масса равна массе Солнца, то есть, 2 × 10³⁰ килограммов. Масса Земли примерно в 333 000 раза меньше.

Карат

В каратах измеряют массу драгоценных камней и металлов в ювелирном деле. Один карат равен 200 миллиграммам. Название и сама величина связаны с семенами рожкового дерева (по-английски: carob, произносится «кароб»). Один карат раньше был равен весу семечка этого дерева, и покупатели носили с собой свои семена, чтобы проверить, не обманули ли их продавцы драгоценных металлов и камней. Вес золотой монеты в Древнем Риме равнялся 24 семечкам рожкового дерева, и поэтому караты стали применяться для обозначения количества золота в сплаве. 24 карата — чистое золото, 12 каратов — сплав наполовину из золота, и так далее.

Маркировка веса в «мягкой метрической» системе на продуктах питания в Канаде

Гран

Гран использовался как мера веса во многих странах до эпохи Возрождения. Он основывался на весе зерен, в основном ячменя, и других популярных в то время культур. Один гран равен около 65 миллиграммам. Это немного больше четверти карата. Пока караты не получили широкого распространения, в ювелирном деле использовались граны. Эта мера веса используется и по сей день для измерения массы пороха, пуль, стрел, а также золотой фольги в стоматологии.

Другие единицы массы

В странах, где не принята метрическая система, используют меры массы британской имперской системы. Например, в Великобритании, США и Канаде широко применяются фунты, стоуны и унции. Один фунт равен 453,6 грамма. Стоуны используются в основном только для измерения массы тела человека. Один стоун — это примерно 6,35 килограмма или ровно 14 фунтов. Унции в основном используют в кулинарных рецептах, особенно для продуктов в маленьких порциях. Одна унция это 1/16 фунта, или приблизительно 28,35 грамма. В Канаде, которая формально перешла на метрическую систему в 1970-х годах, многие продукты продаются в упаковке, рассчитанной на округленные британские единицы, например, один фунт или 14 жидких унций, однако на них указан вес или объем в метрических единицах. По-английски такую систему называют «мягкой метрической» (англ. soft metric), в отличие от «жесткой метрической» системы (англ. hard metric), в которой на упаковке указывают округленный вес в метрических единицах. На этом снимке показаны «мягкие метрические» упаковки продуктов питания с указанием веса только в метрических единицах и объема как в метрических, так и в имперских единицах.